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1 Motivation

My research interests lie in the area of the moduli of Riemann surfaces and
its interplay with other fields of mathematics, especially hyperbolic geometry,
algebraic geometry, symplectic geometry and ergodic theory.

Let X be a complete hyperbolic Riemann surface of genus g with n punc-
tures. My work has been motivated by the problem of estimating sX(L), the
number of primitive simple closed geodesics of hyperbolic length less than L on
X. To explore this problem, we have followed two approaches: the first using
symplectic geometry of moduli spaces of curves, and the second using ergodic
theory of the earthquake flow. Both methods provide new results and insights
about the moduli space Mg,n(�1, . . . , �n) of Riemann surfaces with geodesic
boundary components, the bundle of holomorphic quadratic differentials over
Mg,n and the space of measured laminations.

Our main results are the following.

• We give a recursive method for calculating the Weil-Petersson volume
Vg,n(�) of the moduli space Mg,n(�) of bordered Riemann surfaces with
fixed boundary lengths and show that Vg,n(�) is a polynomial in �1, . . . , �n

(§2).

• We give a new proof of the Witten-Kontsevich formula for the intersection
numbers of tautological classes on Mg,n using hyperbolic geometry (§3).

• We show that the number of simple closed geodesics of length ≤ L on
X ∈ Mg,n has the asymptotic behavior

sX(L) ∼ nXL6g−6+2n

as L → ∞ (§4, §6).

• We establish a relationship between the earthquake flow and the Te-
ichmüller horocycle flow, leading to the proof of the ergodicity of the
earthquake flow on moduli space (§5).

• We calculate the volume of the moduli space Q1Mg,n of unit-norm holo-
morphic quadratic differentials. Remarkably, the answer is given in terms
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of the polynomials for the Weil-Petersson volumes, and is related to the
invariant measure for the earthquake flow (§5).

• We conclude with equidistribution results for the level sets of the lengths
of simple closed curves in moduli space(§6). Our results on the dynam-
ics of the earthquake flow and level sets parallel known results regarding
horocycle flows on homogeneous spaces [Rat2].

Now we turn to a more detailed account of our research projects. We will collect
our plans for future work at the end of each section.

2 Volumes of Moduli spaces of curves

Let Sg,n be a compact, connected, oriented surface of genus g with n boundary
components {βi}n

i=1 with χ(Sg,n) < 0. The mapping class group Modg,n of Sg,n

acts on the Teichmüller space Tg,n of complete hyperbolic Riemann surfaces
marked by Sg,n. The quotient space

Mg,n = Tg,n/ Modg,n

is the moduli space of hyperbolic Riemann surfaces of genus g with n cusps.
The space Tg,n is a finite-dimensional complex manifold equipped with the Weil-
Petersson Kähler metric. The Weil-Petersson volume of the moduli space Mg,n

is a finite number and its value as a function of g and n arises naturally in
different contexts (see e.g. [KMZ] and [Pen]).

We find it fruitful to consider more generally the moduli space of bordered
Riemann surfaces with fixed geodesic boundary lengths. We approach the study
of the volumes of these moduli spaces via the length functions of simple closed
geodesics on a hyperbolic surface.
Notation. Let

Mg,n(�1, . . . , �n)

be the moduli space of hyperbolic Riemann surfaces of genus g with n geodesic
boundary components of length �1, . . . , �n.

In [Mirz2], we establish:

Theorem 2.1 The volume Vg,n(�1, . . . , �n) = Vol(Mg,n(�1, . . . , �n)) is a poly-
nomial in �1, . . . , �n, namely:

Vg,n(�) =
∑

|α|≤3g−3+n

Cα · � 2α,

where Cα > 0 lies in π6g−6+2n−2|α| · Q.

Here the exponent α = (α1, . . . , αn) ranges over elements in (Z+)n, �α =
�α1
1 · · · �αn

n , and |α| =
∑

αi.
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We also give an explicit recursive method for calculating these polynomials.
The constant term of the polynomial Vg,n(�) is the volume of Mg,n, the tradi-
tional moduli space of closed surfaces of genus g with n marked points.
Example: Using our recursive method, we get:

V1,1(�1) = �21/24 + π2/6,

V1,2(�1, �2) = (4π2 + �21 + �22)(12π2 + �21 + �22)/384,

and
V0,4(�1, . . . , �4) = (4π2 + �21 + �22 + �23 + �24)/4.

McShane identity. Our point of departure for calculating these volume poly-
nomials is the following result [McS]:

Theorem 2.2 (McShane) Let X be a hyperbolic once-punctured torus. Then
we have ∑

γ

(1 + e
�γ (X)

2 )−1 =
1
2
, (2.1)

where the sum is over all simple closed geodesics γ on X.

We generalize this formula to arbitrary hyperbolic surfaces with geodesic
boundary components, and develop a method to integrate the generalized iden-
tity over certain coverings of Mg,n(�1, . . . , �n). As a result, we obtain a recursive
formula for the Vg,n(�)’s without having to find a fundamental domain for the
action of the mapping class group on the Teichmüller space [Mirz2].
Volume of the thin part of moduli space. Let Mε

g,n ⊂ Mg,n be the set
of hyperbolic Riemann surfaces whose shortest closed geodesics are of length
≤ ε. As an application of our volume calculation, we also find a formula for the
Weil-Petersson volume of Mε

g,n for sufficiently small ε > 0 [Mirz2].

Future research directions. One challenge is to find a McShane-type formula
for closed surfaces.

We hope to explore the relation between the results above and the Selberg
trace formula, by defining a zeta function related to the lengths of simple closed
geodesics similar to the Selberg zeta function.

This analogy also motivates the study of the simple length spectrum of a
hyperbolic surface. It is interesting to know if there is a bound on the multi-
plicities (the number of simple closed geodesics of the same length) depending
only on g and n. The special case of this question for g = n = 1 is related to
the uniqueness conjecture for Markoff triples [S].

3 The Kontsevich-Witten formula

By applying the method of symplectic reduction, we obtain a formula for the
volume polynomial Vg,n(�) in terms of the intersection numbers of tautological
line bundles over Mg,n.
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Theorem 3.1 The coefficients of the volume polynomial Vol(Mg,n(�1, . . . , �n)) =∑
Cα�α are given by

Cα =
2|α|

α!

∫

Mg,n

ψα1
1 · · ·ψαn

n · w3g−3−|α|,

where ψi is the first Chern class of the ith tautological line bundle, w is the
Weil-Petersson symplectic form, α! =

∏
αi! and |α| =

∑
αi.

Thus our algorithm for calculating volumes leads to a recursive formula for
these intersection numbers leading to the Witten-Kontsevich formula [K].

More precisely, let

〈 τd1 , . . . , τdn
〉g =

∫

Mg,n

∏
i

ψdi
i ,

Fg(t0, t1, . . .) =
∑

〈
∏

τdi
〉g

∏
r>0

tnr
r /nr! ,

where nr = Card(i : di = r) and
∑

di = 3g − 3 + n. Let

F =
∞∑

g=0

λ2g−2Fg,

and

Ln = −
(

(2n + 3)!!
2n+1

)
∂

∂tn+1
+

∞∑
i=0

(
(2i + 2n + 1)!!
(2i − 1)!!2n+1

)
ti

∂

∂ti+n

+
λ2

2

n−1∑
i=0

(
(2i + 1)!!(2n − 2i − 1)!!

2n+1

)
∂2

∂ti∂tn−1−i
,

where (2i + 1)!! = 1 · 3 . . . · (2i + 1).
Then we obtain a new proof of:

Theorem 3.2 (Witten-Kontsevich) For n ≥ −1, we have

Ln(exp(F )) = 0.

Analogies with moduli spaces of stable bundles. The discussion above
suggests some similarities between Mg,n and the variety Hom(π1(S), G)/G of
representations of the fundamental group of the surface S in a compact Lie
group G, up to conjugacy. This space is naturally equipped with a symplectic
structure [Gol1]. For G = SU(2), the representation variety is identified with
the moduli space of semi-stable holomorphic rank 2 vector bundles over a fixed
Riemann surface.
For θ1, . . . , θn ∈ G let

Rg,n(θ1, . . . , θn)
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be the variety of representations of π1(Sg,n) in SU(2) such that the monodromy
around βi lies in the conjugacy class of θi. Here fixing the conjugacy class of the
monodromy around a boundary component β corresponds to fixing the length
of β in the case of Mg,n(�).

Like our argument for proving Theorem 3.2, it is possible to derive recursive
formulas for intersection numbers of line bundles on Rg,n by relating these
numbers to the symplectic volume of Rg,n(θ1, . . . , θn) [Weit] and [Wit].

A surprising difference is that the action of the mapping class does not enter
in the Rg,n case. The space Rg,n is analogous to Teichmüller space, but it has
finite volume. Also, the action of the mapping class group on Rg,n(θ) is ergodic
[Gol2].
Future research directions. It would be interesting to understand the in-
tersection numbers involving the Chern classes of the Hodge bundle based on
analogies with representation varieties as in [Je],[JeW] .

The moduli space of curves can be generalized in two ways: to the moduli
space of stable maps in to a projective variety, and to the moduli space of
curves with spin structures [JKV]. As in the case of Mg,n, it is possible to
define intersection numbers of certain natural line bundles over these spaces. An
important problem is to generalize Theorem 3.2 and prove that these intersection
pairings satisfy the Virasoro constraints [Pand].

We would like to generalize Verlinde type formulas for L, the positive line
bundle determined by the Weil-Petersson symplectic form.

4 Growth of the number of simple closed geodesics

We now return to the problem of the growth of sX(L), the number of simple
closed curves of length ≤ L on X. In this section, we discuss the proof of the
asymptotic formula sX(L) ∼ nXL6g−6+2n based on our results on the volume
of Mg,n(�).

For X ∈ Mg,n, let cX(L) be the number of primitive closed geodesics on X
of length ≤ L. By work of Delsart, Huber, Selberg and Margulis, we have

cX(L) ∼ eL/L

as L → ∞. However, very few closed geodesics are simple [BS] and it is hard to
discern them in π1(Sg,n).
Notation. Let MLg,n be the space of measured laminations on Sg,n. For any
two isotopy classes of essential simple closed curves on Sg,n the intersection
number i(α, β) is the minimum number of points in which transverse represen-
tatives of α and β must meet. The intersection pairing extends to a continuous
map i : MLg,n ×MLg,n → R.
There is a one-to-one correspondence between the integral measured lamina-
tions, MLg,n(Z), and unions of disjoint essential simple closed curves on Sg,n,
up to isotopy. There is a natural symplectic form on MLg,n preserved by the
action of Modg,n.
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For any X ∈ Tg,n and λ ∈ MLg,n, let �λ(X) denote the hyperbolic length
of λ on X.
Counting problems. To understand the growth of sX(L), it proves fruitful
to fix a simple closed curve γ ∈ MLg,n(Z) and consider more generally the
counting function

sX(L, γ) = #{α ∈ Modg,n ·γ | �α(X) ≤ L}.
There are only finitely many isotopy classes of simple closed curves on Sg,n up
to the action of the mapping class group. Therefore, summing sX(L, γ) over
representatives of these orbits gives sX(L), and the asymptotics of the sX(L, γ)’s
determines the asymptotics of sX(L).

In [Mirz1] we show :

Theorem 4.1 For any γ ∈ MLg,n(Z), we have

lim
L→∞

sX(L, γ)
L6g−6+2n

= nγ(X),

where nγ(X) is a smooth proper function of X ∈ Mg,n.

In the case of M1,1, this result was previously obtained by McShane and Rivin
[MR]. The upper and lower estimates for SX(L) when X ∈ Mg,n were obtained
by M. Rees in [Rs] and I. Rivin in [Ri].
Idea of the proof. The crux of matter is to understand the density of Modg,n ·γ
in MLg,n(Z). This is similar to the problem of the density of relatively prime
pairs (p, q) in Z2. Our approach is to use the moduli space Mg,n to understand
the average of these densities. Appealing to Theorem 2.1, we show that the
average defined by

S(L, γ) =
∫

Mg,n

sX(L, γ) dX

is well-behaved; in fact it is a polynomial in L. Here the integral on Mg,n is taken
with respect to the Weil-Petersson volume form. This polynomial behaviour
allows us to use the ergodicity of the action of the mapping class group on
MLg,n [Mas2] to prove that these densities exist. Then Theorem 4.1 follows by
a simple lattice-counting argument.
Frequencies of different types of simple closed curves. We now discuss
more precisely how nγ(X), the constant in the growth rate of sX(L, γ), depends
on X and on the simple closed curve γ.

Let BX be the unit ball in the space of measured geodeic laminations with
respect to the length function at X:

BX = {λ |�λ(X) ≤ 1} ⊂ MLg,n.

We show that BX is convex with respect to the piecewise linear structure of
MLg,n. Let B(X) = Vol(BX) with respect to the Thurston volume form on
MLg,n. We show that

bg,n =
∫

Mg,n

B(X) dX
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is a finite number in π6g−6+2n ·Q which can be calculated in terms of the leading
coefficients of the volume polynomials.

We show that the contributions of X and γ to nγ(X) separate as follows:

Theorem 4.2 For any γ ∈ MLg,n(Z), there exists a rational number cγ such
that we have:

nγ(X) =
cγ · B(X)

bg,n
.

It follows that the relative frequencies of different types of simple closed curves
on X are universal rational numbers.

Corollary 4.3 For X ∈ Mg,n and γ1, γ2 ∈ MLg,n(Z), we have

lim
L→∞

sX(L, γ1)
sX(L, γ2)

=
cγ1

cγ2

∈ Q.

The limit is a positive rational number independent of X.

Remark. The same result holds when the surface X has variable negative
curvature.
Example: Let γi be a simple closed curve on Sg,0 such that Sg,0 − γi

∼= Si,1 ∪
Sg−i,1. Then we have

sX(L, γi)
sX(L, γj)

→
(
g
i

)
(
g
j

)
as L → ∞.

The frequency cγ ∈ Q of a given simple closed curve can be described in a
purely topological way as follows:

Theorem 4.4 For any γ ∈ MLg,n(Z), we have

#({λ ∈ MLg,n(Z) | i(λ, γ) ≤ k}/ Stab(γ))
k6g−6+2n

→ cγ

as k → ∞.

Note that cγ = cδ for all δ ∈ Modg,n ·γ.
We can also calculate cγ recursively using our recursive formula for Vg,n(�).

In fact, we can write the number cγ in terms of the intersection numbers of
tautological line bundles over the moduli space of Riemann surfaces of type
Sg,n − γ. This is analogous to the situation for counting branched coverings of
P1 (Hurwitz numbers); these numbers also can be expressed in terms of tauto-
logical intersection products in Mg,n[PO].

Future research directions. We would like to find a different proof of Corol-
lary 4.3 using loop-erased random walks or combinatorial methods.

It would be interesting to see if and the Euler characteristic of Mg,n, calcu-
lated in [HZ], can be related to bg,n via a Gauss-Bonnet type theorem.

7



We would like to strengthen the asymptotic formula for sX(L, γ) to include
an error term of the form

sX(L, γ) ∼ nX(γ)L6g−6+2n + O(Lα)

as L → ∞, for some α < 6g − 6 + 2n.
Similar counting problems for the number of saddle connections for a generic

Abelian differential have been studies by Masur, Eskin and Zorich [EMZ]. Con-
stants in the quadratic asymptotics and frequencies of different types of saddle
connections are related to volumes of moduli spaces of holomorphic Abelian
differentials. We would like to find a different way to calculate these constants
by using ergodic theory and the symplectic structure of moduli spaces of holo-
morphic Abelian differentials.

5 From MLg,n to holomorphic quadratic differ-
entials

In this section, we discuss the relationship between the earthquake flow on
PMg,n the bundle of geodesic measured laminations and the Teichmuller horo-
cycle flow on QMg,n the bundle of holomorphic quadratic differentials. Our
main result is:

Theorem 5.1 The earthquake flow and the Teichmüller horocycle flow are mea-
surably isomorphic.

It is known that the Teichmüller horocycle flow is ergodic with respect to
the Lebesgue measure class [Mas2]. Therefore, we have:

Corollary 5.2 The earthquake flow on P1Mg,n is ergodic with respect to the
Lebesgue measure class.

We also discuss the invariant measure for the earthquake flow on P1Mg,n. Then
by using the relation between P1Mg,n and Q1Mg,n, we obtain:

Theorem 5.3 We have:

Vol(Q1Mg,n) =
∫

Mg,n

B(X) dX.

The value of Vol(Q1Mg,n) arises in several problems related to billiards and
dynamics of interval exchange maps. Volumes of different strata of moduli
spaces of holomorphic Abelian differentials have been calculated in [EO], but
the case of Q1Mg,n seems to be new.
Notation. Attached to Sg,n one has:

• QTg,n → Tg,n, the bundle of holomorphic quadratic differentials;
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• Q1Tg,n, the unit sub-bundle for the norm

‖ q ‖=
∫
X

|q|;

• QMg,n = QTg,n/ Modg,n, the moduli space of holomorphic quadratic dif-
ferentials;

• PTg,n = MLg,n ×Tg,n, the bundle of geodesic measured laminations over
Tg,n;

• P1Tg,n, the unit sub-bundle for the norm

‖ (λ, X) ‖= �λ(X);

and finally,

• PMg,n = PTg,n/ Modg,n.

We wish to compare the dynamics of Thurston’s earthquake flow on Q1Mg,n

to the Teichmuller horocycle flow on P1Mg,n. These flows are defined as follows.

• Thurston’s earthquake flow on PTg,n is defined at time t by

(X, λ) t→ (Twtλ(X), λ),

where for a simple closed curve γ on X ∈ Tg,n, Twtγ(X) ∈ Tg,n is con-
structed by cutting X along γ, twisting distance t to the right, and re-
gluing [Th] .

• Any holomorphic quadratic differential q ∈ QTg,n can be defined with a
pair of transverse measured foliations on Sg,n: the horizontal and vertical
foliations of q. In local coordinate charts (x, y) on Sg,n in which q =
(dx + i dy)2 the vertical measured foliation of ht(q) is determined by the
from |dx + t dy|; that is ht acts by the matrix

[
1 t
0 1

]

on QTg,n [Mas1].

Invariant measures for the earthquake flow. It is known that there exists
a finite invariant measure µg,n for the horocycle flow on Q1Mg,n [Mas1]. We
prove:

Theorem 5.4 There exists a finite invariant measure νg,n for the earthquake
flow on P1Mg,n. This measure projects to the volume form given by B(X) ·µwp

on Mg,n.
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Any point X ∈ Tg,n define a measure νX on PMLg,n such that for A ⊂
PMLg,n, we have

νX(A) = Vol({λ |[λ] ∈ A, �λ(X) ≤ 1}),

with respect to the Thurston volume form on MLg,n. The Weil-Petersson vol-
ume form on Mg,n and the family {νX}X∈Tg,n

of measures on PMLg,n combine
to give the invariant measure νg,n.

Since νX(PMLg,n) = B(X), the results of §4 imply

Vol(P1Mg,n) =
∫

Mg,n

B(X) dX < ∞.

Idea of the proof of Theorem 5.1. Using work of Bonahon [Bon] and
Thurston [Th] on shearing and cataclysm coordinates for the Teichmüller space,
we show that:

Theorem 5.5 For any complete measured lamination λ, there exists a sym-
plectomorphism

Fλ : Tg,n → MLg,n

such that �λ(X) = i(λ, Fλ(X)).

The earthquake and Teichmuller horocycle flow are the Hamiltonian flows for
the length and intersection function [Pap]. Since Fλ sends one function to the
other, we have:

Corollary 5.6 The map Fλ sends the earthquake flow for λ to the correspond-
ing Teichmüller horocycle flow in a time-preserving fashion.

As the map Fλ is defined for almost every λ ∈ MLg,n, the measurable map
F : PTg,n → QTg,n, defined by

F (λ, X) = (λ, Fλ(X))

sends the earthquake flow to the corresponding Teichmüller horocycle flow. It
is clear that F descends to a map

F : P1Mg,n → Q1Mg,n,

which will be denoted by the same letter. By Theorem 5.5, we have

F ∗(µg,n) = νg,n,

and we obtain Theorem 5.1 and Theorem 5.3.
Analogy with negatively curved spaces. For each X ∈ Tg,n, the measure
νX on PMLg,n is analogous to the visual measure on Sn−1

∞ seen from x ∈ Hn.
For X, Y ∈ Tg,n, define GX,Y : PMLg,n → R+ by

GX,Y ([λ]) = log
(

�λ(X)
�λ(Y )

)
.
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Then we have
dνX

dνY
[λ] = eGX,Y [λ].

It would be interesting to understand this analogy better.

6 Equidistribution results and counting simple
closed geodesics

The growth of the number of simple closed geodesics, sX(L), can be also investi-
gated via the dynamics of Thurston’s earthquake flow on moduli space. In this
section, we present our results on equidistribution of horospheres and obtain
another proof of the asymptotic formula sX(L) ∼ nXL6g−6+2n as L → ∞.

Our equidistribution results suggest more analogies between the earthquake
flow and unipotent flows on homogeneous spaces. The latter are now rather
well-understood by work of Ratner, Margulis and Dani [Rat2].
Horosphere measures. For any γ ∈ MLg,n(Z) and L > 0, we define an
ergodic, earthquake-flow invariant probability measure νγ(L) on PMg,n sup-
ported on the set

Hγ(L) = {(X, λ) | �γ(X) = L, �λ(X) = 1, i(γ, λ) = 0}/ Modg,n ⊂ P1Mg,n.

The preimage of Hγ(L) in PTg,n lies above the set

{X | �γ(X) = L } ⊂ Tg,n

which is analogous to a horosphere.
By using the ergodicity and nondivergence of the earthquake flow [MW], we

prove the following equidistribution result:

Theorem 6.1 As L tends to infinity, the horosphere meaure vγ(L) become
equidistributed with respect to the unique invariant probability measure in the
Lebesgue measure class; that is,

νγ(L) → νg,n/bg,n

as L → ∞.

In particular, if γ is a maximal system of simple closed curves then by using the
fact that vX(PMLg,n) = B(X), we show that the images of the level sets

{X ∈ Tg,n | �γ(X) = L}

become equidistributed with respect to the measure B(X) · µwp in Mg,n as
L → ∞.
Counting simple closed geodesics. By studying the asymptotic behavior of
the family of invariant measures mentioned above, we obtain a stronger version
of Theorem 4.1:
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Corollary 6.2 For X ∈ Mg,n, we have

sX(L + 1, γ) − sX(L, γ)
L6g−6+2n−1

→ nγ(X)

as L → ∞.

Earthquake balls. We show that B(X) is related to the growth rate of the
volume of the earthquake ball.

Theorem 6.3 Let BX(r) be the Weil-Petersson volume of the earthquake ball
about X ∈ Tg,n of radius r; that is

BX(r) = Vol({Twt λ(X) | T ≤ r, �λ(X) ≤ 1}).

Then we have
BX(r)

r6g−6+2n
→ B(X)

as r → ∞.

Analogy with counting integral points on affine varieties. Let N(V, L)
be the number integral points x ∈ V (Z) of ‖x‖≤ L on the affine homogeneous
variety V = G(Z)\G/H. There are similarities between the problem of the
growth of sX(L) and the problem of the growth of N(V, L) as L → ∞. Under-
standing the asymptotics of N(V, L) leads to a proof of Siegel’s mass formula
[EsM], [ERS].

In this analogy we have the following correspondences:

V ←→ MLg,n

V (Z) ←→ MLg,n(Z)

G(Z) ←→ Modg,n

‖ . ‖←→ �(X)

In both cases one reduces the counting problems to the case of a single orbit,
and uses equidistribution results to obtain asymptotics.

Future research directions. We would like to classify the ergodic measures
for the earthquake flow and prove results analogous to Ratner’s rigidity the-
orems for unipotent flows on homogeneous spaces [Rat1]. We speculate that
any ergodic earthquake flow invariant measure is “geometric”. Understanding
the closure of orbits of the earthquake flow in P1Mg,n would shed light to
the classification of ergodic measures for PSL(2, R) action on the moduli space
of holomorphic quadratic differentials and characterizing Veech curves (as in
[Mc2]). Also, in case when λ is a pseudo-Anosov lamination, this would be
related to the topology of the complexifaction of closed Teichmüller geodesics
in Mg,n as in [Mc3].

A more approachable problem is the classification of the ergodic measures
of the action of the mapping class group on MLg,n.

12



The problem of classification of the ergodic measures of the earthquake flow
might be useful for problems related to the Kazhdan Property T of the mapping
class group [GW].

It is an interesting open problem to know if the earthquake flow and horo-
cycle flow are actually topologically equivalent. Also, we do not know if the
earthquake flow can be extended to a PSL(2, R) action on PMg,n.

The isomorphism in Theorem 5.5 suggests that the stretch path (defined in
[Th]) plays the role of the geodesic flow for the earthquake flow. We plan to
study basic properties of these paths. In particular, it is important to study
recurrent stretch paths.

The map Fλ (as in Theorem 5.5) is only defined for complete maximal mea-
sured laminations. A project that we are currently working on is to extend this
map for non-complete measured laminations. We would like to relate the image
of this map to the stratum Qg,n(a1, . . . , ak), of the moduli space of holomorphic
quadratic differentials, that is the space of pairs (X, φ) where X ∈ Mg,n and φ
is a holomorphic quadratic differential on X with zeros of order a1, . . . , ak. We
can show that the geometric structure of the complementary regions determines
the type of the quadratic differential. We would like to generalize the existing
construction by using special train tracks and obtain a counting result analo-
gous to Corollary 4.3 in this setting. This might be useful for counting problems
related to interval exchange maps [Zo]. It also would yield information about
the volume of Q1

g,n(a1, . . . , an) as defined in [Mas1].
The problem of the classification of all ergodic measures for the earthquake

or horocycle flow would shed light on the asymptotic behaviour of the number
of saddle connections of all 1-forms (not just generic ones).

There is a one-to-one correspondence between simple closed curves and
closed orbits for the earthquake flow. It would be interesting to define a dy-
namical zeta function related to the periodic trajectories of the earthquake flow
similar to the dynamical zeta functions that can be defined for Axiom A flows
[PP].

7 Additional research directions

We conclude by mentioning some other directions for future research that in-
terest us.
PSL(2, C)-character variety and quadratic differentials. Moduli spaces of
holomorphic quadratic differentials are also closely related to the representation
variety

V (S) = Homirr(π1(S), PSL(2, C))/PSL(2, C),

and P (S), the moduli space of complex projective structures on S. By work
of Kawai [Ka] the complex-symplectic structure on P (S) from the holomor-
phic quadratic differentials equals the complex symplectic structure induced by
the holonomy map from PSL(2, C)-character variety. Also the complex twist
vector field (related to grafting in [Mc1]) is Hamiltonian with respect to the
complex length function. We are interested in understanding the natural line

13



bundles induced on P (S) as a representation variety (especially comparing them
to classes discussed in [Ko]), and also the interpretation of the geometric data
like non-realizable laminations [Bow] in holomorphic the quadratic differentials
setting.

Also, we are interested in calculating the volume of the moduli space of
quadratic differentials with fixed holonomy around boundary components. This
would give rise to a different proof of the counting results obtained in [EMZ].
Topological dynamics on representation variety. In case of the represen-
tation variety to SU(2), it is known [PX] that if σ ∈ Hom

(
π1(Σ), SU(2)) is such

that σ
(
π1(Σ)

)
is dense in SU(2) then the Modg,n-orbit of the conjugacy class [σ]

is dense in the representation variety. We would like to prove analogous results
in the PSL(2, C) case.
Dynamics on rational surfaces. We are interested in studying the dynamics
of automorphisms of compact complex manifolds. If the entropy of an automor-
phism of X, a Kähler surface, is zero then the dynamics is completely under-
stood. One is led to consider automorphisms of positive entropy [Ca]. A surface
with a positive entropy automorphism is a torus, a K3 surface, an Enrique sur-
face or a non-minimal rational surface. In a joint project with Izzet Coskun,
we study positive entropy automorphisms of non-minimal rational surfaces by
investigating the set of periodic points and curves.
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